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CGU: An Algorithm for Molecular Structure Prediction

K.A. Dill, A.T. Phillips, J.B. Rosen

Abstract. A global optimization method is presented for predicting the minimum
energy structure of small protein-like molecules. This method begins by
collecting a large number of molecular conformations, each obtained by finding
a local minimum of a potential energy function from a random starting point.
The information from these conformers is then used to form a convex quadratic
global underestimating function for the potential energy of all known
conformers. This underestimator is an L1 approximation to all known local
minima, and is obtained by a linear programming formulation and solution. The
minimum of this underestimator is used to predict the global minimum for the
function, allowing a localized conformer search to be performed based on the
predicted minimum. The new set of conformers generated by the localized
search serves as the basis for another quadratic underestimation step in an
iterative algorithm. This algorithm has been used to predict the minimum energy
structures of heteropolymers with as many as 48 residues, and can be applied to
a variety of molecular models. The results obtained also show the dependence of
the native conformation on the sequence of hydrophobic and polar residues.

1.  Introduction

It is widely accepted that the folded state of a protein is completely dependent on the
one-dimensional linear sequence (i.e. “primary” sequence) of amino acids from which it is
constructed: external factors, such as helper (chaperone) proteins, present at the time of
folding have no effect on the final, or native, state of the protein. Furthermore, the exist-
ence of a unique native conformation, in which residues distant in sequence but close in
proximity exhibit a densely packed hydrophobic core, suggests that this 3-dimensional
structure is largely encoded within the sequential arrangement of these hydrophobic (H)
and polar (P) amino acids. The assumption that hydrophobic interaction is the single most
dominant force in the correct folding of a protein also suggests that simplified potential
energy functions, for which the terms involve only pairwise H-H attraction and steric over-
lap repulsion, may be sufficient to guide computational search strategies to the global min-
imum representing the native state.

During the past 20 years, a number of computer algorithms have been developed that
aim to predict the fold of a protein (see for example [3], [5], [8], [10]). Such approaches
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are generally based on two assumptions. First, that thereexists a potential energy function
for the protein; and second that the folded state corresponds to the structure with the low-
est potential energy (minimum of the potential energy function) and is thus in a state of
thermodynamic equilibrium. This view is supported by in vitro observations that proteins
can successfully refold from a variety of denatured states.

2.  A Simple Polypeptide Model

Computational search methods are not yet fast enough to find global optima in real-
space representations using accurate all-atom models and potential functions. A practical
conformational search strategy will require both a simplified molecular model with an
associated potential energy function which consists of the dominant forces involved in
protein folding, and also a global optimization method which takes full advantage of any
special properties of this kind of energy function. In what follows, we describe a global
optimization algorithm which has been successfully used for one such simplified model.
We then describe a more realistic model, which we believe will permit the use of our algo-
rithm on small protein molecules.

In our initial testing of the CGU algorithm (to be described shortly), we chose to use a
simple “string of beads” model consisting ofn monomers C connected in sequence (see
Figure 2.1). The 3-dimensional position of each monomer, relative to the previous mono-

mers in the sequence, is defined by the parametersl (the “bond lengths”),θ (the “bond
angles”), andξ (the backbone “dihedral angles”). Of these we have chosen to fixl andθ
(the reasons for this will become clear later), thus reducing the number of independent
parameters necessary to uniquely define a 3-dimensional conformation to onlyn-1. In
order to model the H-P effects that are encoded within the backbone sequence, each
“bead” C in this simplified model is categorized as either hydrophobic (H) or polar (P).

Corresponding to this simplified polypeptide model is a potential energy function also
characterized by its simplicity. This function includes just three components: a contact
energy term favoring pairwise H-H residues, a steric repulsive term which rejects any con-
formation that would permit unreasonably small interatomic distances, and a main chain
torsional term that allows only certain preset values for the backbone dihedral anglesξ.
Despite its simplicity, the use of this type of potential function has already proven success-
ful in studies conducted independently by Sun, Thomas, and Dill [13] and by Srinivasan
and Rose [11]. Both groups have demonstrated that this type of potential function is suffi-
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Figure 2.1 Simplified “String of Beads”
Polypeptide Model
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cient to accurately model the forces which are most responsible for folding proteins. Here
our energy function is somewhat different from either of those. The specific potential
function used initially in this study has the following form:

(1)

where the steric repulsion and hydrophobic attraction termsEex+ Ehp can conveniently be
combined and represented by the well known Lennard-Jones pairwise potential function

.

This term defines the potential energy contributions of all beads separated by more than
two along the primary chain. The Lennard-Jones coefficientsεij  and σij  are constants
defined by the relationships between the two specific beads (e.g. amino acids) involved.
The terms involvingrij  in the Lennard-Jones expression represent the Euclidean distances
between beadsi and j. The constantHij  = 1 if beadsi and j are both H-type (attractive
monomers), and hence both a repulsive force (ensuring that the chain is “self-avoiding”)
and an attractive force (since the beads are H-H) are added to the potential energy (see
Figure 2.2). On the other hand,Hij  = 0 if the beadsi andj are H-P, P-H, or P-P pairs, so

that the Lennard-Jones contribution to the total potential energy is just the repulsive force
that ensures self-avoidance.

A trigonometric based penalty implementing the potential energy termEξ in equation 1
was used in these tests, and had the following form:

.

Using this term, there are only three “preferred” backbone dihedral angles of 60˚, 180˚,
and 300˚ with all others penalized to some extent (determined by the constantC1). The
purpose of this term is to mimic, in some elementary sense, the restrictive nature of the
Ramachandran plot (see [4]) for each residue in a realistic protein model.

3.  The CGU Global Optimization Algorithm

One practical means for finding the global minimum of the polypeptide’s potential
energy function is to use a global underestimator to localize the search in the region of the
global minimum. This CGU (convex global underestimator) method is designed to fit all
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known local minima with a convex function which underestimates all of them, but which
differs from them by the minimum possible amount in the discrete L1 norm (see Figure
3.1). Any non-negative linear combination of convex functions can be used for the under-

estimator, but for simplicity we use convex quadratic functions. The minimum of this
underestimator is used to predict the global minimum for the function, allowing a local-
ized conformer search to be performed based on the predicted minimum. A new set of
conformers generated by the localized search then serves as a basis for another quadratic
underestimation. After several repetitions, the global minimum can be found with reason-
able assurance.

This method, first described in [9], is presented in terms of the differentiable potential
energy functionEtotal(φ), where φ ∈ Rn-1 (n represents the number of residues in the
polypeptide chain), and whereEtotal(φ) has many local minima. Thus, φ is a vector ofn-1
backbone dihedral angles. Definingτ = n-1, then to begin the iterative process, a set ofk ≥
2τ+1 distinct local minima are computed. This can be done with relative ease by using an
efficient unconstrained minimizer, starting with a large enough set of points chosen at ran-
dom in an initial hyperrectangle Hφ, which is assumed to enclose the entire torsion angle
space.

Assuming thatk ≥ 2τ+1 local minimaφ(j), for j=1,...,k, have been computed, a convex
quadratic underestimator functionF(φ) is now fitted to these local minima so that it under-
estimates all the local minima, and normally interpolatesEtotal(φ(j)) at 2τ+1 points (see
Figure 3.1). This is accomplished by determining the coefficients in the functionF(φ) so
that

(2)

for j=1,...,k, and where is minimized. That is, the difference betweenF(φ) and
Etotal(φ) is minimized in the discrete L1 norm over the set ofk local minimaφ(j), j=1,...,k.
Although many choices are possible, the underestimating functionF(φ) selected for the
CGU method is a separable convex quadratic given by

(3) .

Note thatci anddi appear linearly in the constraints of equation 2 for each local mini-
mum φ(j). Convexity of this quadratic function is guaranteed by requiring thatdi ≥ 0 for
i=1,...,τ.

Additionally, in order to guarantee thatF(φ) attains its global minimumFmin in the
hyperrectangle Hφ = {φi: 0 ≤ φi ≤ φi ≤ φi ≤ 2π}, the following additional set of constraints
are imposed on the coefficients ofF(φ):

Figure 3.1 The Convex Global
Underestimator (CGU)
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(4)  and  fori=1,...,τ.

Note that the satisfaction of equation 4 implies thatci ≤ 0 anddi ≥ 0 for i=1,...,τ.
The unknown coefficientsci, i=0,...,τ, anddi, i=1,...,τ, can be determined by a simple

linear programming formulation and solution, and since the convex quadratic function
F(φ) gives a global approximation to the local minima ofEtotal(φ), then its easily com-
puted global minimum function valueFmin is a good candidate for an approximation to the
global minimum of the potential energy functionEtotal(φ). The complete details of this lin-
ear programming formulation are given in [9], and so are not presented here.

The convex quadratic underestimating functionF(φ) determined by the valuesc ∈ Rτ+1

andd ∈ Rτ provide a global approximation to the local minima ofEtotal(φ), and its easily
computed global minimum pointFmin is given by(φmin)i = -ci/di, i=1,...,τ, with corre-
sponding function valueFmin given by . The valueFmin is a
good candidate for an approximation to the global minimum of the potential energy func-
tion Etotal(φ), and soφmin can be used as an initial starting point around which additional
configurations (i.e. local minima) should be generated. These local minima are added to
the set of all known local minima, and the process is repeated. Before each iteration of this
process, it is necessary to reduce the volume of the hyperrectangle Hφ over which the new
configurations are produced so that a tighter fit ofF(φ) to the local minima “near”φmin is
constructed.

If Ec is a cutoff energy, then one means for modifying the size of the hyperrectangle Hφ
at any step is to let Hφ = {φ: F(φ) ≤ Ec}. Clearly, if Ec is reduced, the size of Hφ is also
reduced. At every iteration the predicted global minimum valueFmin satisfiesFmin ≤ Eto-

tal(φ*), whereφ* is the smallestknown local minimum conformation computed so far (see
Figure 3.2). Therefore, Ec = Etotal(φ*) is often a good choice. If at least one improved

pointφ, with Etotal(φ) < Etotal(φ*), is obtained in each iteration, then the search domain Hφ
will strictly decrease at each iteration, and may decrease substantially in some iterations
(see Figure 3.3). Such a means for reducing the search domain Hφ does not of course

guarantee that the true global minimum will be found. In fact, it should be clear that the
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Figure 3.2 Defining the Hyperrectangle Hφ
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true global solution may be excluded from the new search domain if it avoids detection as
a local minimum solution at every iteration. Hence it is very important that the initial set
of k distinct local minima be sufficiently large so that either the true global minimum is
included among them, or so that the global convex underestimatorF(φ) accurately models
and predicts the global structure ofEtotal(φ). As a general rule of thumb (based only on
computational experience),k = 10(2τ+1) is sufficient for this purpose.

Based on the general discussion above and the details provided in [9], the CGU algo-
rithm can be succinctly described as follows:

1. Computek ≥ 2τ+1 distinct local minimaφ(j), for j=1,...,k, of the functionEtotal(φ).
2. Compute the convex quadratic underestimator function

by solving a linear program (see [9] for details). The optimal solution to this linear
program directly provides the values ofc andd.

3. Compute the predicted global minimum pointφmin given by(φmin)i = -ci/di, i=1,...,τ,
with corresponding function valueFmin given by .

4. If φmin = φ* , whereφ*  = argmin{Etotal(φ(j)), j=1,2,...} is the best local minimum found
so far, then stop and reportφ*  as the approximate global minimum conformation.

5. Reduce the volume of the hyperrectangle Hφ over which the new configurations will
be produced by using the rule Hφ = {φ: F(φ) ≤ Ec} where Ec = Etotal(φ*).

6. Useφmin as an initial starting point around which additional local minimaφ(j) of Eto-

tal(φ) (restricted to the hyperrectangle Hφ) are generated.
7. Return to step 2.

While the number of new local minima to be generated in step 6 is unspecified, a value
exceeding 2τ+1 would of course be required for the construction of another convex qua-
dratic underestimator in the next iteration (step 2). In the computational tests presented in
the next section, we have chosen to use 10(2τ+1) starting points for both steps 1 and 6 in
an attempt to generate at least 2τ+1 distinct local minima.

The rate and method by which the hyperrectangle size is modified are important in
determining the convergence properties of the CGU algorithm. It can be shown that if the
convex underestimatorF(φ) does in fact underestimate the global minimum ofEtotal(φ) at
every iteration of the CGU algorithm, then by appropriately applying “branch-and-bound”
techniques to this method, finite convergence to the global minimum can be guaranteed
(albeit in a possibly exponential number of steps). Note that the underestimator need not
actually underestimateall local minima for this property to be true, it only need underesti-
mate the global solution at each step. Since F(φ) underestimates all known local minima in
the current hyperrectangle Hφ (by construction), it is very likely that it will also underesti-
mate the global minimum. While this is not guaranteed to be the case, our computational
experience shows that is usually satisfied. Another method of constructing a convex global
underestimator, and a related global optimization algorithm, is described elsewhere in [6],
but no computational comparison of these two methods has yet been made.

4.  Computational Results for the Simplified Model

The computational results presented below for the simplified model were obtained on a
network of eight Sun SparcStations using the MPI message passing system for communi-
cation between the CPUs. Steps 1 and 6 of the algorithm (presented in section 3) were per-
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formed in parallel on all eight of the processors, while the remaining steps of the
algorithm were done sequentially on a single designated “master” processor.

A detailed set of computational results for the CGU method have previously been pre-
sented in [9]. In that paper, the method was tested on a large sample of homopolymer
sequences (that is, all residues are hydrophobic) ranging in size from only 4 residues
(“beads”) to as many as 30. This paper presents only two additional test cases, but these
tests serve to demonstrate that the CGU method can be successfully applied to larger het-
eropolymer sequences (i.e. mixed sequences of H and P). The two HP sequences tested
were designed by E. Shakhnovich as part of a friendly competition between his group at
Harvard and the Dill group at the University of California, San Francisco. In that competi-
tion, the Harvard group designed a set of 3-dimensional lattice-based 48-mer HP
sequences with a known folded target structure (also restricted to the lattice) which they
denoted “putative native state” (PNS). The PNS was not known to be the global solution,
since it was computed by an inverse folding technique using a Monte Carlo method. The
object of that competition was to see if the Dill group could find the PNS (or a folded state
with an even lower energy) using their own algorithms, but given only the primary HP
sequence. Ten HP sequences were tested, and of these we have selected two representative
ones, the sequences labeled #8 and #10 (see [14]).

The computational tests presented below serve to illustrate two points: (1) that the CGU
method can be practical for moderate size sequences (in this case 48-mer sequences), (2)
and that the global minimum energy is in factvery highly dependent on the primary
sequence.

When applied to the first of these sequences, sequence #8, the CGU method found the
folded state, with an associated minimum energy of -87.57, as shown in Figure 4.1 (the

dark grey beads are P type while the light grey beads are H type). For this folded confor-
mation (which we will denote F#8), if the sequence had consisted of all P type monomers,

Sequence #8 is PHHPHHHPHHHHPPHHHPPPPPPHPHHPPHHPHPPPHHPHPHPHHPPP

Figure 4.1 Folded State (F#8) for HP
Sequence #8
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then corresponding energy for F#8 would be +128.99, whereas if it had consisted of all H
type monomers, the energy would have been -239.97. Furthermore, when the sequence is
fully extended, i.e. all backbone dihedralsξ are set to 180˚, then the corresponding energy
for sequence #8 is -4.22. This may also be considered an upper bound.

Recall that F#8 is the presumed global minimum conformation for the HP sequence #8.
If this sequence is replaced by all H or all P type monomers, then F#8 is not necessarily
even alocal minimum. Figures 4.2 and 4.3 show the conformations which result from a

single local minimization (i.e. relaxation) beginning from state F#8 with these two
homopolymer sequences in place of sequence #8. Clearly, they are decidedly different.
Table 4.1 summarizes these various results.

A similar analysis was performed for sequence #10. Figure 4.4 shows the folded con-
formation (denoted F#10) for sequence #10, which has a corresponding energy value of -
97.22. Figures 4.5 and 4.6 show the relaxed conformations obtained when sequence #10 is

Sequence #10 is PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH

Figure 4.2 Relaxation From F#8 Using 48-mer
All H-type Homopolymer

Figure 4.3 Relaxation From F#8 Using 48-mer
All P-type Homopolymer
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replaced by an all H and an all P homopolymer sequence, and Table 4.2 summarizes the
results according to energies for each state. Like sequence #8, sequence #10 consists of
50% H and 50% P type monomers, yet the folded conformations F#8 and F#10 are decid-
edly different (compare Figures 4.1 and 4.4). In fact, Table 4.3 shows that the energy
obtained by sequence #8 when placed into state F#10 (the “native” state for sequence #10)
is actually considerably above its minimum energy in F#8 (compare -23.20 to -87.57).
Likewise, when sequence #10 is evaluated in state F#8 it also obtains a much higher
energy (compare +39.48 to -97.22). Furthermore, even if these “non-native” conforma-
tions are allowed to relax to a local minimum, Table 4.3 clearly shows that the result

Figure 4.4 Folded State (F#10) for HP Sequence #10

Figure 4.5 Relaxation From F#10 Using 48-mer
All H-type Homopolymer
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remains non-native. Hence, the global minimum energy and associated conformation of an
HP sequence isvery highly dependent on the primary sequence used. Figures 4.7 and 4.8
show the two “relaxed” conformations obtained by locally minimizing each sequence
from the “other” sequences native state.

Table 4.1  Dependence of Energy on Primary Sequence (Based on #8)

All H-type
Homopolymer

HP Sequence
#8

All P-type
Homopolymer

Fully
Extended

-19.55 -4.22 +1.27

F#8 -239.97 -87.57 +128.99

Relaxation
from F#8

-334.22 -87.57 +13.06

Table 4.2  Dependence of Energy on Primary Sequence (Based on #10)

All H-type
Homopolymer

HP Sequence
#10

All P-type
Homopolymer

Fully
Extended

-19.55 -3.98 +1.27

F#10 -243.87 -97.22 +133.91

Relaxation
From F#10

-315.41 -97.22 +10.56

Figure 4.6 Relaxation From F#10 Using 48-mer
All P-type Homopolymer
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It is also the case that removing the lattice restriction, as we have done, gives a very dif-
ferent native conformation with the identical HP sequence. This is seen by comparing the
conformations in Figures 4.1 and 4.4 with those presented in [14]. However, it should also
be noted that the energy function used in these tests, equation 1, is not related to the lat-
tice-based energy function that was used in the “competition”. Hence, one should not
expect the lattice-based results to provide a reasonable approximation to the “relaxed” 3-
dimensional folded states of a molecules when not restricted to a lattice.

5.  A More Detailed Polypeptide Model

As previously stated, by using a simplified polypeptide model, the complexity of the
problem formulation can be reduced to an acceptable level for optimization techniques.
Unfortunately though, the simplifications made in section 2 do not provide a very realistic

Figure 4.7 Conformation Obtained by
Relaxation of Sequence #8 from State F#10

Figure 4.8 Conformation Obtained by Relaxation of
Sequence #10 from State F#8
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model of true protein sequences. The simplifications were made only to illustrate and test
the applicability of the CGU global optimization algorithm to protein structure prediction.
Hence, for the CGU algorithm to be a practical method for determining tertiary structure,
it must be applied to a more detailed and realistic polypeptide model.

In real proteins, each residue in the primary sequence is characterized by its backbone
components NH-CαH-C′O and one of 20 possible amino acid sidechains attached to the
central Cα atom. A key element of this more detailed model is that eachsidechain is clas-
sified as either hydrophobic or polar, and is represented by only a single “virtual” center of
mass atom. Thus the potential energy function again involves only three terms: excluded
volume repulsive forces between all pairs of atoms, a very powerful attractive force
between each pair of hydrophobic sidechain center of mass atoms, and a torsional penalty
disallowing conformations which do not exist. Since the residues in this model come in
only two forms, H (hydrophobic) and P (polar), where the H-type monomers exhibit a
strong pairwise attraction, the lowest free energy state is obtained by those conformations
with the greatest number of H-H “contacts” (see [1], [12]). One significant advantage of
this detailed formulation of the folding problem is that it allows the model to take advan-
tage of known scientific knowledge about the chemical structure of real sequences of mol-
ecules. The use of knowledge such as the Ramachandran plot (see [4]), which specifies the
allowable angles between consecutive amino acids in proteins, also greatly simplifies the
problem.

Realistic molecular structure information is often given in terms of internal molecular
coordinates which consist of bond lengthsl (defined by every pair of consecutive back-
bone atoms), bond anglesθ (defined by every three consecutive backbone atoms), and the
backbone dihedral anglesϕ, ψ, andω, whereϕ gives the position of C′ relative to the pre-
vious three consecutive backbone atoms C′-N-Cα, ψ gives the position of N relative to the
previous three consecutive backbone atoms N-Cα-C′, andω gives the position of Cα rela-
tive to the previous three consecutive backbone atoms Cα-C′-N. Hence, the backbone of a
protein consisting ofn amino acid residues can be completely represented in 3-dimen-
sional space using these parameters, as shown in Figure 5.1.

Fortunately, these 9n-6 parameters (for ann-residue structure) do not all vary indepen-
dently. In fact, some of these (7n-4 of them, to be precise) are regarded as fixed since they
are found to vary within only a very small neighborhood of an experimentally determined
value. Among these are the 3n-1 backbone bond lengthsl between the pairs of consecutive
atoms N-C′ (fixed at 1.32Å), C′-Cα (fixed at 1.53Å), and Cα-N (fixed at 1.47Å). Also,
the 3n-2 backbone bond anglesθ defined by N-Cα-C′ (110˚), Cα-C′−N (114˚), and C′-N-

Table 4.3  Comparison of Energies for Sequences #8 and #10

Sequence #8 Sequence #10

F#8 -87.57 +39.48

F#10 -23.20 -97.22

Relaxation
from F#8

-87.57 -33.90

Relaxation
from F#10

-54.28 -97.22
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Cα (123˚) are also fixed at their ideal values. It is for these reasons thatl andθ were also
fixed in the simplified model in section 2. Finally, then-1 peptide bond dihedral anglesω
are fixed in the trans (180˚) conformation. This leaves only then-1 backbone dihedral
angle pairs (ϕ,ψ) in the reduced representation model. These also are not completely inde-
pendent; in fact, they are severely constrained by known chemical data (the Ramachan-
dran plot) for each of the 20 amino acid residues.

Furthermore, since the atoms from one Cα to the next Cα along the backbone can be
grouped into rigidplanar peptide units, there are no extra parameters required to express
the 3-dimensional position of the attached O and H peptide atoms. These bond lengths and
bond angles are also known and fixed at 1.24Å and 121˚ for O, and 1.0Å and 123˚ for H.
Likewise, since each sidechain is represented by only a single center of mass “virtual
atom” Cs, no extra parameters are needed to define the position of each sidechain with
respect to the backbone mainchain. The following table (Table 5.1) of sidechain bond
lengths (between the backbone atom Cα and the sidechain center of mass atom Cs),
sidechain bond angles (formed by the sequence N-CαCs), and sidechain torsion angles
(between Cs and the plane formed by the backbone sequence N-Cα-C′) were used to fix
the position of each sidechain atom. The twenty amino acids are also classified into two
groups (shown in the table), hydrophobic and polar, according to the scale given by
Miyazawa and Jernigan in [7].

Corresponding to this new more detailed polypeptide model is a new potential energy
function. As in the simplified model of section 2, this function includes the three compo-
nents in equation 1: a contact energy termEhp favoring pairwise H-H residues, a steric
repulsive termEex which rejects any conformation that would permit unreasonably small
interatomic distances, and a main chain torsional termEϕψ (replacingEξ in the simplified
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Figure 5.1 More Detailed Polypeptide Model
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model) that allows only those (ϕ,ψ) pairs which are permitted by the Ramachandran plot.
The specific potential function used in this more detailed and accurate polypeptide model
is most similar to the Sun/Thomas/Dill [13] potential function, which, as stated earlier, has
already been proven successful in studies conducted independently by Sun, Thomas, and
Dill and by Srinivasan and Rose [11]. In particular, the excluded volume energy termEex
and the hydrophobic interaction energy termEhp are defined in this case as follows:

, and

 where .

The excluded volume termEex is a soft sigmoidal potential (see Figure 5.2) wheredij  is
the interatomic distance between two Cα atoms or between two sidechain center of mass
atoms Cs, dw = 0.1Åwhich determines the rate of decrease ofEex, deff = 3.6Å for Cα
atoms and 3.2Å for the sidechain centroids which determine the midpoint of the function
(i.e. where the function equals 1/2 of its maximum value). The constant multiplierC1 was
set to 5.0 which determines the hardness of the sphere in the excluded volume interaction.
Similarly, the hydrophobic interaction energy termEhp is a short ranged soft sigmoidal
potential (see Figure 5.3) wheredij  represents the interatomic distance between two
sidechain centroids Cs, d0 = 6.5Å anddt = 2.5Å which represent the rate of decrease and

Table 5.1  Residue Parameters for Center of Mass Sidechain Virtual Atoms

Residue Name
Sidechain

Bond Length
(Angstroms)

Bond Angle
(degrees)

Torsion Angle
(degrees)

H-P
Designation

ALA 1.531 109.625 238.776 H
ARG 4.180 110.156 219.279 P
ASN 2.485 111.156 222.437 P
ASP 2.482 111.160 223.911 P
CYS 2.065 106.938 227.905 H
GLN 3.130 108.423 219.363 P
GLU 3.106 108.577 222.055 P
GLY 0.000 0.000 0.000 P
HIS 3.176 105.977 223.334 P
ILE 2.324 109.945 227.774 H
LEU 2.590 112.273 219.236 H
LYS 3.474 112.711 218.817 P
MET 2.976 113.370 218.790 H
PHE 3.399 112.055 222.650 H
PRO 1.868 64.159 241.896 P
SER 1.897 108.155 237.853 P
THR 2.107 109.617 231.888 P
TRP 3.907 112.930 226.091 H
TYR 3.794 109.695 222.119 H
VAL 1.968 111.792 232.308 H

Eex

C1

1.0 exp dij deff–( ) dw⁄( )+
----------------------------------------------------------------

i j
∑=

Ehp εi j f dij( )
i j– 2>

∑= f dij( )
C2

1.0 exp dij d0–( ) dt⁄( )+
----------------------------------------------------------=
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the midpoint ofEhp, respectively. The hydrophobic interaction coefficientεij  = -1.0 when
both residuesi andj are hydrophobic, and is set to 0 otherwise. The constant multiplierC2
= 1.0 determines the interaction value and is the equivalent of 1/5 of one excluded volume
violation. The model is not very sensitive to the pair of constantsC1 andC2 provided that
C1 is considerably larger thanC2.

The final term in the potential energy function,Eϕψ, is the torsional penalty term allow-
ing only “realistic” (ϕ,ψ) pairs in each conformation. That is, sinceϕ andψ refer to rota-
tions of two rigid peptide units around the same Cα atom (see Figure 5.1), most
combinations produce steric collisions either between atoms in different peptide groups or
between a peptide unit and the side chain attached to Cα (except for glycine). Hence, only
certain specific combinations of (ϕ,ψ) pairs are actually observed in practice, and are often
conveyed via the Ramachandran plot, such as the one for threonine (THR) in Figure 5.4,
and the ϕ-ψ search space is therefore very much restricted. The energy termEϕψ accounts
for this.

To compare the simplified and more detailed models at this point, it should be clear that
the simplified “string of beads” model treated bothϕ andψ together as a single “virtual
dihedral angle” (denoted byξ), thereby reducing the number of independently varying
parameters from 2n-2 to onlyn-1 (compare Figure 5.1 with Figure 2.1). In the simplified
model, each of the backbone components NH-CαH-C′O and the associated sidechain mol-

Figure 5.2 Excluded Volume Interaction
Potential Function Term

E
ex

deff = 3.6deff = 3.2

dij

dij

E
h

p

Figure 5.3 Hydrophobic Interaction
Potential Function Term
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ecules CαCs were replaced by asingle backbone “virtual atom” denoted in Figure 2.1 by C
(note that the backbone bond anglesθ and backbone bond lengthsl were fixed at their
ideal values, even though theydo not represent the same quantities as shown in Figure
5.1). In addition, because the single dihedral angleξ effectively replaced the (ϕ,ψ) pair for
each residue, there were no corresponding peptide planes and no sidechain molecules in
the simplified model. However, in order to retain the H-P effects that are encoded within
the backbone sequence, each “virtual atom” C in that model was categorized as either H or
P, thus incorporating the hydrophobic nature of what would have been the associated
sidechain (if it were represented). Hence, the CGU algorithm can be appliedunchanged to
this new more realistic model using the differentiable potential energy functionEtotal(φ)
from equation 1 (with the new definitions forEex, Ehp, andEϕψ), where φ ∈ Rτ with τ=2n-
2 in place ofn-1.

Computational testing of the CGU algorithm using this new detailed polypeptide model
with the Sun/Thomas/Dill potential energy function on actual protein sequences is pre-
sented in the separate paper by Dill, Phillips, and Rosen [2].

6.  Conclusions

Preliminary computational testing of the CGU algorithm applied to a simplified
polypeptide model has demonstrated that the method is practical for both the homopoly-
mer and heteropolymer models and for sequences with as many as 48 monomers. Further-
more, since the CGU algorithm is a global optimization method which is not model
specific, it can be appliedunchanged to the more detailed polypeptide model, or to any
other protein model which depends on finding the global minimum of a differentiable
potential energy function.

7.  Acknowledgments

The authors wish to acknowledge Professor David Ferguson and his colleagues in the
Department of Medicinal Chemistry at the University of Minnesota for their valuable con-
tributions on the simple polypeptide model.

8.  References
1. K.A. Dill, Dominant Forces in Protein Folding, Biochemistry29 (1990), 7133-7155.
2. K.A. Dill, A.T. Phillips, and J.B. Rosen,Molecular Structure Prediction by Global Optimization,

Figure 5.4 Ramachandran Plot for
Threonine (THR)

ϕ

ψ



Dill, Phillips, Rosen 17

Journal of Global Optimization, submitted (1996).
3. D.A. Hinds, and M. Levitt,Exploring Conformational Space with a Simple Lattice Model for

Protein Structure, Journal of Molecular Biology243 (1994), 668-682.
4. A.L. Lehninger,Biochemistry: The Molecular Basis of Cell Structure and Function, Worth Pub-

lishers, New York, 1970.
5. M. Levitt, and A. Warshel,Computer Simulation of Protein Folding, Nature 253 (1975), 694-698.
6. C.D. Maranas, I.P. Androulakis, and C.A. Floudas,A Deterministic Global Optimization

Approach for the Protein Folding Problem, Dimacs Series in Discrete Mathematics and Theoreti-
cal Computer Science, in press (1995).

7. S. Miyazawa, and R.L. Jernigan,A New Substitution Matrix for Protein Sequence Searches Based
on Contact Frequencies in Protein Structures, Protein Engineering6 (1993): 267-278.

8. A. Monge, R.A. Friesner, and B. Honig,An Algorithm to Generate Low-Resolution Protein Ter-
tiary Structures from Knowledge of Secondary Structure, Proceedings of the National Academy
of Sciences USA91 (1994), 5027-5029.

9. A.T. Phillips, J.B. Rosen, and V.H. Walke,Molecular Structure Determination by Convex Global
Underestimation of Local Energy Minima, Dimacs Series in Discrete Mathematics and Theoreti-
cal Computer Science23 (1995), 181-198.

10.J. Skolnick, and A. Kolinski,Simulations of the Folding of a Globular Protein, Science250
(1990), 1121-1125.

11.R. Srinivasan and G.D. Rose,LINUS: A Hierarchic Procedure to Predict the Fold of a Protein,
PROTEINS: Structure, Function, and Genetics22 (1995), 81-99.

12.S. Sun,Reduced representation model of protein structure prediction: statistical potential and
genetic algorithms, Protein Science2 (1993), 762-785.

13.S. Sun, P.D. Thomas, and K.A. Dill,A Simple Protein Folding Algorithm using a Binary Code
and Secondary Structure Constraints, Protein Engineering, submitted (1995).

14.K. Yue, K.M. Fiebig, P.D. Thomas, H.S. Chan, E.I. Shakhnovich, and K.A. Dill,A Test of Lattice
Protein Folding Algorithms, Proceedings of the National Academy of Sciences USA92 (1995),
325-329.

K.A. Dill, Department of Pharmaceutical Chemistry, University of California San Fran-
cisco, San Francisco, CA 94118

A.T. Phillips, Computer Science Department, United States Naval Academy, Annapolis,
MD 21402

J.B. Rosen, Computer Science and Engineering Department, University of California
San Diego, San Diego, CA 92093


